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 :لخصالم

البيانات   هذايقدم   بين  الدمج  عبر  الموصلات  أشباه  في  الإشابة  خصائص  وتحسين  لدراسة  تجريبيًا  حسابيًا  إطارًا  البحث 

من   بيانات اصطناعية  أنُشئت مجموعة  التحسين.  البديلة، وخوارزميات  والنماذج  ثلاثة    2000الاصطناعية،  تأثير  تمثل  عينّة 

، وتركيز الشائبة، على مخرجات فيزيائية رئيسة تشمل مؤشر التجانس، معلمات أساسية هي: درجة الحرارة، وزمن المعالجة

وحركية الحاملات، وكثافة العيوب. جرى توليد هذه البيانات باستخدام علاقات شبه فيزيائية مع تضمين ضوضاء تجريبية لزيادة 

 الواقعية. 

حقق دقة عالية، ما أتاح استبدال المحاكاة   Random Forestاعتماداً على هذه البيانات، درُّب نموذج بديل قائم على خوارزمية  

المتكرر. ثم استخُدمت خوارزمية   المكلفة ببيئة حسابية سريعة للاستكشاف والتحسين   Bayesian Optimizationالفيزيائية 

للبحث عن ظروف تشغيل محسّنة تحقق توازنًا بين تحسين التجانس وزيادة الحركية وتقليل العيوب، وأسفرت عن نطاقات تشغيل 

 ثانية، مع تركيزات دوبانت مرتفعة.  90–80°م، وأزمنة 860–845مثلى تقريبية عند درجات حرارة 

كما طُوّر نظام أولي لتوليد الفرضيات يعتمد آلية احتمالية تكرارية لاختبار مجموعات جديدة من المعلمات وتحديثها عبر النموذج 

البديل. ولتقييم الموثوقية، استخُدمت أساليب إحصائية متعددة وتحليل الحساسية ومحاكاة مونتِ كارلو، وأظهرت النتائج استقرارًا 

السلوك. يبرهن البحث أن هذا الدمج المنهجي يمثل نهجًا عمليًا يقلل الكلفة الحسابية والتجريبية ويمهّد لتطوير   جيداً واتساقًا في

 أطر متقدمة لدعم تصميم المواد وتحسين عملياتها. 
 

الذكاء الاصطناعي؛ الإشابة؛ أشباه الموصلات؛ النماذج البديلة؛ التحسين البايزي؛ غابة القرار العشوائية؛   :الكلمات المفتاحية

 .البيانات الاصطناعية؛ تحليل الحساسية؛ محاكاة مونتِ كارلو؛ حركية الحاملات؛ كثافة العيوب؛ مؤشر التجانس
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Abstract 

This research presents an experimental computational framework for studying and optimizing 

doping properties in semiconductors by integrating synthetic data, alternative models, and 

optimization algorithms. A synthetic dataset of 2000 samples was generated, representing the 

effect of three key parameters—temperature, processing time, and impurity concentration—on 

major physical outputs, including homogeneity index, carrier kinetics, and defect density. This 

dataset was generated using quasi-physical relationships with experimental noise incorporation to 

enhance realism. 

Based on this dataset, an alternative model based on the Random Forest algorithm was trained 

with high accuracy, enabling the replacement of costly physical simulations with a rapid 

computational environment for iterative exploration and optimization. A Bayesian optimization 

algorithm was then employed to search for optimized operating conditions that balance improved 

homogeneity, increased kinetics, and reduced defects. This yielded approximate optimal operating 

ranges at temperatures of 845–860°C and processing times of 80–90 seconds, with high dopant 

concentrations. A preliminary hypothesis generation system was also developed, employing an 

iterative probability mechanism to test and update new sets of parameters across the alternative 

model. To assess reliability, multiple statistical methods, sensitivity analysis, and Monte Carlo 

simulation were used, and the results demonstrated good stability and consistency of behavior. 

This research demonstrates that this systematic integration represents a practical approach that 

reduces computational and experimental costs and paves the way for the development of advanced 

frameworks to support materials design and process optimization. 

Keywords: Artificial intelligence; Semiconductor doping; Surrogate models; Bayesian 

optimization; Random Forest; Synthetic data; Sensitivity analysis; Monte Carlo simulation; 

Carrier mobility; Defect density; Uniformity index. 
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 المقدمة: .1

 :الخلفية والأهمية .1.1
 

الموصلات في صناعة أشباه  متسارعاً  العقود الأخيرة تطوراً  الحديثة الركيزة الأساسية  اعتبارها  ب  تشهد  التكنولوجية    للبنية 

المتقدمةو المتكاملة والأجهزة الإلكترونية  الدقيقة والذاكرة والحساسات والدوائر  المعالجات  المباشر بتصنيع  وتعتمد   ؛ارتباطها 

على الضبط الدقيق للخواص الكهربائية للمواد شبه الموصلة، والتي يتم التحكم بها في   كليًاموثوقية وكفاءة هذه الأجهزة اعتماداً  

فالإشابة هي العملية الفيزيائية التي يتم فيها إدخال شوائب محددة بتركيزات  ،(Doping) المقام الأول من خلال عمليات الإشابة

، وبالتالي تمكينها n و p مدروسة داخل البنية البلورية للمواد، بغية تعديل تركيز الحاملات الكهربائية وتهيئة المادة لتشكيل مناطق 

أداء وظائفها في الترانزستورات والديودات والخلايا الشمسية وغيرها من المكوّنات الإلكترونية. وقد أبرزت مراجعات شاملة من  

، أن هذه العملية تمثل نقطة Peng et al. (2021)و Scaccabarozzi et al. (2021)  لأساليب الإشابة التقليدية، مثل أعمال

حساسة في سلسلة تصنيع أشباه الموصلات، وأن التحكم الدقيق فيها ينعكس مباشرة على أداء الجهاز النهائي واستقراره وعمره 

 .التشغيلي
 

إلا أن    ،  الأيونية، أو الإشابة بالبلازما  ورغم التطور الكبير في تقنيات الإشابة  سواء باستخدام الانتشار الحراري، أو الحزم

أمام  رئيسياً  تمثل عائقاً  لا تزال  العيوب،  كثافة  الخطي، وارتفاع  الشوائب غير  البلوري، وانتشار  بالتجانس  المتعلقة  التحديات 

ويزداد هذا التحدي بالتزامن مع التوجه العالمي نحو تقليص أبعاد الأجهزة النانوية    ،الوصول إلى أداء مثالي للمواد الإلكترونية

يصبح لأي انحراف صغير في تركيز الإشابة أو   وفي هكذا دقة مطلوبة،  ؛وزيادة كثافة الدوائر والتوجه للحوسبة عالية التردد

حول  Oh et al. (2023)و Yuan et al. (2023) ، كما أظهرت أعمالعمقها انعكاس كبير على خصائص الجهاز النهائي

 .حساسية المواد لتقلبات الإشابة
 

  ي والتعلمّ العميق ونماذج التنبؤوفي المقابل، أحدث الذكاء الاصطناعي ثورة واسعة في علوم المواد، عبر تقنيات التعلمّ الآل

  Madika et al. (2025) وقد تناولت العديد من الدراسات مثل  ، التي أدت إلى تسريع اكتشاف المواد الجديدة وتحسين خواصها

، الآفاق الواسعة للذكاء الاصطناعي في تحسين التصميم الجزيئي، وتوجيه التجارب، وتسريع اكتشاف Liang et al. (2022)و

الطاقة والإلكترونيات والبصريات قدرته على   ،مواد واعدة في مجالات  السياق من  الذكاء الاصطناعي في هذا  أهمية  وتبرز 

التق القدرات  المتغيرات بطريقة تفوق كثيراً  عندما يتعلق الأمر بالمواد متعددة استكشاف فضاءات ضخمة من  ليدية، خصوصاً 

الانتشار،  الشائبة، وتركيزها، ومعدل  العملية، ونوع  الحرارة، وزمن  مثل درجة  مترابطة  تعتمد على عوامل  التي  المتغيرات 

 .والبنية البلورية للمادة
 

تصميم    وأأنظمة ذكاء اصطناعي قادرة على توليد الفرضيات العلمية،    تتبنىمن    اتجاه جديدوفي السنوات الأخيرة، ظهرت  

النتائج،    وأتشغيل المحاكاة،    وأالتجارب،   الفرضيات  واقتراحتقييم  الفكرة فعاليتها في مجالات اكتشاف   ؛تعديل  وقد أثبتت هذه 

، وفي توقع (Khorasani et al., 2024) وفي تحسين مواد الطاقة الحرارية (Mazheika et al., 2022) المحفّزات الكيميائية

غير أن هذه الاتجاهات،   .(Tarbi, 2023 ؛Tang, 2023 ؛Masuda, 2024) في الأنظمة المشابة  Bandgap فجوات الطاقة

على الرغم من قوتها، تظل متركزة على التنبؤ بخصائص المواد أو تحسين معاملات منفصلة، بينما لم تمتد بعد إلى صياغة نظام 

 .وفي دورة كاملة مغلقة كامل قادر على توليد فرضيات حول عمليات الإشابة نفسها وتحسين شروطها بشكل منهجي

ومن هنا تتضح الفجوة العلمية التي يستهدف هذا البحث معالجتها؛ فعلى الرغم من العدد الكبير من الدراسات التي تربط الذكاء  

 الاصطناعي بعلوم المواد، لا تزال معظم الجهود البحثية متركزة على التنبؤ بخصائص المواد أو تحسين معاملات تشغيلية 
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يهدف هذا البحث   وعليه  ،منفصلة، دون تقديم إطار تجريبي متكامل يدعم الاستكشاف المنهجي لشروط عمليات الإشابة نفسها 

إلى تطوير إطار حسابي تجريبي يوظّف تقنيات الذكاء الاصطناعي المساعد لدعم صياغة الفرضيات الكمية المتعلقة بظروف 

البديلة المحاكاة والنماذج  تعتمد على  تعلم مغلقة  النظام ، حيث  الإشابة، واختبارها، وتحسينها بشكل تكراري ضمن دورة  يقوم 

واختبارها باستخدام محاكاة بديلة   مثل درجة الحرارة، وزمن المعالجة، وتركيز الشائبة  باقتراح مجموعات من معلمات الإشابة

التجانس، وحركية الحاملات، وكثافة العيوب، ليتم بعدها سريعة، ثم تقييم النتائج بالاعتماد على مؤشرات فيزيائية رئيسية تشمل  

الت  ؛تعديل الفرضيات تدريجيًا استناداً إلى المخرجات المتحصلة جريبي وتقليل ويهدف هذا النهج إلى دعم عمليات الاستكشاف 

، دون ادعاء الاستقلالية الكاملة عن المعرفة الفيزيائية المسبقة أو التدخل ة ماديا وزمنيًاالمكلف  ة التقليدي  اربالاعتماد على التج

 .البشري

آفاقًا واعدة أمام التطبيقات الصناعية، إذ يمكن أن يساهم في تقليل الزمن والكلفة اللازمين  إن تصميم مثل هذا الإطار يفتح 

لتطوير مواد ذات جودة عالية، وتحسين ضبط الإشابة على المستوى النانوي، وبالتالي رفع كفاءة وموثوقية الأجهزة المصنعة. 

، إلى أن دمج تقنيات الذكاء الاصطناعي في مراقبة وتحسين العمليات Senoner et al. (2022) وتشير دراسات صناعية، مثل

التصنيعية يمكن أن يقلل الأخطاء التشغيلية ويحسّن جودة الإنتاج، مما يجعل تطوير أطر حسابية داعمة لعمليات الإشابة خطوة 

 .مهمة نحو تعزيز البحث والتطوير في صناعة أشباه الموصلات 
 

وبناءً على ما تقدم، تبرز أهمية هذا البحث في تقديم نموذج تطبيقي يعتمد على الذكاء الاصطناعي المساعد لتوليد واختبار 

الفرضيات المتعلقة بعمليات الإشابة، مع التركيز على تحسين الخصائص الفيزيائية الجوهرية للمواد شبه الموصلة. كما يوفّر هذا 

ء عليه مستقبلًا لتطوير أنظمة أكثر تقدمًّا لدعم اتخاذ القرار في البيئات البحثية والصناعية، دون تجاوز النموذج أساسًا يمكن البنا

 .الحدود الواقعية لقدرات النماذج الحسابية الحالية
 

  :الإشكالية الحالية والفجوة المعرفية .2 
 

على الرغم من التطور الكبير في تقنيات الإشابة وأساليب التنبؤ بخصائص المواد، لا يزال يفتقر مجال أشباه الموصلات إلى  .1

إطار منهجي متكامل يوظّف تقنيات الذكاء الاصطناعي المساعد لدعم توليد فرضيات تجريبية كمية حول عمليات الإشابة،  

تكراري ضمن   بشكل  وتحسينها  الصناعية  واختبارها،  التطبيقات  معظم  في  الإشابة  عمليات  زالت  فما  مغلقة.  تعلم  دورة 

والبحثية تعتمد على التجريب التقليدي أو على تحسينات محصورة في نطاقات تشغيلية محدودة، الأمر الذي يقيدّ القدرة على  

س، وارتفاع كثافة العيوب، وضعف استكشاف فضاءات أوسع من الشروط التشغيلية، ويؤدي إلى استمرار تحديات عدم التجان

 .موثوقية الأداء

وفي هذا السياق، تبرز الحاجة إلى تطوير أطر حسابية قادرة على دعم الاستكشاف المنهجي لشروط الإشابة من خلال الدمج  .2

بين النماذج التنبؤية، والمحاكاة البديلة، وخوارزميات التحسين، بما يتيح تقليل الاعتماد على التجريب المكلف وتسريع عملية 

وانطلاقًا من هذه الإشكالية، يسعى هذا البحث إلى معالجة الفجوة المعرفية من خلال الوصول إلى شروط تشغيل محسّنة.  

 :مناقشة الأسئلة البحثية التالية

كيف يمكن توظيف تقنيات الذكاء الاصطناعي المساعد لدعم توليد فرضيات تجريبية كمية تتعلق بظروف الإشابة، واختبارها  .3

 بشكل تكراري؟ 

ما النماذج الحسابية الأكثر ملاءمة لبناء نظام قادر على اقتراح قيم محسّنة لمتغيرات الإشابة الأساسية، مثل درجة الحرارة،  .4

 وزمن المعالجة، وتركيز الشائبة؟
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النماذج البديلة .5 ضمن دورة تعلم مغلقة لتقييم الفرضيات وتحسينها، مع إمكانية   (Surrogate Models) كيف يمكن دمج 

 التوسّع مستقبلًا نحو محاكيات فيزيائية أكثر تفصيلًا؟ 

مثل التجانس، وحركية الحاملات، وكثافة  —إلى أي مدى يستطيع الإطار المقترح تحسين الخصائص الفيزيائية المستهدفة .6

 مقارنة بالأساليب التقليدية المعتمدة على التجريب المحدود؟ العيوب

في   .7 للتطبيق  وقابليتها  وواقعيتها،  المقترحة،  الفرضيات  جودة  لتقييم  اعتمادها  الواجب  والإحصائية  الفيزيائية  المعايير  ما 

 السياقات الصناعية؟

  :أهداف البحث والمساهمة العلمية. 2.1
 

التجريبية   الفرضيات  توليد  لدعم  المساعد  الاصطناعي  الذكاء  يعتمد على  تجريبي  إطار حسابي  تطوير  إلى  البحث  هذا  يهدف 

البيانات  على  تعتمد  محاكاة  بيئة  ضمن  وذلك  الموصلات،  أشباه  في  الإشابة  عمليات  سياق  في  تكراريًا  وتحسينها  واختبارها 

 :ء الحسابي. ولتحقيق هذا الهدف، يسعى البحث إلى ما يليالاصطناعية والنماذج البديلة خفيفة العب
 

، وصياغة  (Probabilistic Reasoning) تصميم وحدة أولية لتوليد الفرضيات تعتمد على آلية احتمالية لتحديث الاعتقادات .1

 .مقترحات كمية حول متغيرات الإشابة الأساسية، مثل درجة الحرارة، وزمن المعالجة، وتركيز الشائبة

، بهدف الاستكشاف المنهجي لفضاء معلمات الإشابة  Bayesian Optimization تطبيق خوارزميات تحسين احتمالية، مثل .2

 .والبحث عن شروط تشغيل محسّنة ضمن الحدود الفيزيائية المدروسة

لاستبدال المحاكاة الفيزيائية   Random Forest Regressor قائم على (Surrogate Simulator) تطوير محاكي بديل .3

 .الثقيلة، وتوفير تقييم سريع وفعّال للفرضيات المقترحة

 :اعتماد مجموعة من المؤشرات الفيزيائية الرئيسة لتقييم جودة المادة الناتجة تحت ظروف الإشابة المختلفة، وتشمل .4

 (Uniformity Index)  مؤشر التجانس -

 (Carrier Mobility)  حركية الحاملات -

 (Defect Density)  كثافة العيوب -

تحليل مخرجات النظام وتفسيرها علميًا من خلال وحدة تفسير لاحقة تعتمد على مبادئ فيزيائية مبسّطة، ومقارنتها بالاتجاهات   .5

 .المتوقعة في نماذج الانتشار التقليدية
 

ويسهم هذا البحث علميًا من خلال اقتراح إطار منهجي متكامل يوظّف الذكاء الاصطناعي لدعم دراسة وتحسين عمليات الإشابة 

التحسين. ويمكن  البديلة، وخوارزميات  الاصطناعية، والنماذج  البيانات  بين  المنهجي  الدمج  الموصلات، وذلك عبر  أشباه  في 

 :يما يليتلخيص المساهمات العلمية الرئيسة ف
 

تقديم نموذج أولي لإطار ذكاء اصطناعي مساعد يدعم توليد الفرضيات التجريبية واختبارها وتحسينها تكراريًا ضمن دورة   .1

 .تعلم مغلقة، دون ادعاء الاستقلالية الكاملة عن المعرفة الفيزيائية المسبقة

، مثل التجانس، وحركية الحاملات، وكثافة العيوب،  زيادة القدرة على التحكم بهاو  تحسين فهم خصائص المواد شبه الموصلة .2

 .بما يسهم في تعزيز جودة الأداء في التطبيقات الإلكترونية والضوئية

 Bayesian تمكين الاستكشاف المنهجي لشروط إشابة غير تقليدية من خلال البحث الذكي في فضاء المعلمات باستخدام .3

Optimizationمقارنة بالأساليب اليدوية المحدودة ،. 
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تقليل الزمن والكلفة التجريبية عبر استبدال جزء من التجارب الفيزيائية المكلفة بمحاكاة بديلة سريعة تعتمد على بيانات مولدّة   .4

 .بعلاقات شبه فيزيائية

البنى   .5 التلدين، وضبط  عمليات  تحسين  مثل  المواد،  علوم  في  أخرى  تطبيقات  مع  والتكييف  للتوسّع  قابل  عام  إطار  توفير 

 .النانوية، ودعم تصميم مواد جديدة
 

 :والدراسات السابقة مراجعة الأدبيات .2
 

   مدخل 
 

يقدمّ هذا الفصل عرضاً نظرياً للمفاهيم الأساسية المرتبطة بموضوع البحث، بدءاً من المبادئ الفيزيائية لعمليات الإشابة في أشباه  

اكتشاف  المستخدمة في  الذكاء الاصطناعي  بأطر  العمليات، وانتهاءً  الحوسبي ومحاكاة  المواد  بأسس علم  الموصلات، مروراً 

للدراسات السابقة ذات الصلة، والتي شكّلت الأساس ل  ؛التجريبيةالمواد وتوليد الفرضيات   بناء كما يتضمن الفصل تحليلاً نقدياً 

 .إلى سدهّا، مع إبراز الفجوة العلمية التي يسعى البحث الإطار المفاهيمي

 

 يوضّح تدرّج تركيز الشوائب داخل ركيزة السيليكون أثناء عملية الإشابة الحرارية.   مولد بالذكاء  مقطع عرضي 1الشكل 

العالي التركيز  منطقة  من:  كلّ  الشكل  في  المنخفض(High Concentration Zone)  يظهر  التركيز  ومنطقة   ، (Low 

Concentration Zone)بالإضافة إلى جبهة الانتشار ، (Diffusion Front) التي تعبّر عن عمق الاختراق الفعلي للشوائب ،  

الناتجة عن الجرعات العالية أو الإجهاد البلوري، وهو ما ينسجم مع  (Defect Clusters) كما تم توضيح مجموعات العيوب

 .المتغيرات التي ركّز عليها البحث مثل التجانس، الناقلية، وكثافة العيوب
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  :الإطار النظري .1.2

 

  :المواد شبه الموصلة وأسس الإشابة .1.1.2
 

 المواد شبه الموصلة: الخصائص والدور البنيوي  -
 

أشباه الموصلات هي مواد تقع خصائصها الكهربائية بين الموصلات والعوازل، حيث يمكن التحكم في ناقليتها عبر تغييرات 

صغيرة في تركيز الحاملات، وتعُد أساسًا في بناء الترانزستورات والدوائر المتكاملة والمستشعرات والخلايا الشمسية. وتحُدد 

ركية الحاملات، وانتشار العيوب البلورية، وهي عوامل تعتمد مباشرة على تقنيات التصنيع خصائصها من خلال فجوة الطاقة، وح

 . (Sze & Ng, 2007; Streetman & Banerjee, 2015; Wolf, 1990) .وعمليات الإشابة الحرارية أو الأيونية
 

 . الطرق الصناعيةالإشابة: المفهوم و -

الإشابة أهم العمليات في تصنيع أشباه الموصلات، حيث يتم إدخال ذرات شوائب محددة داخل الشبكة  (Doping) تعُدّ  إحدى 

للمادة. وتسُتخدم الإشابة لضبط مستوى   الكهربائية وتعديل الخصائص الإلكترونية  الحاملات  التحكم في تركيز  البلورية بهدف 

، وتحسين أداء الأجهزة الدقيقة. يعتمد تأثير الإشابة على نوع الذرات المدخلة، وجرعتها، وعمق  p–n التوصيلية، إنشاء الوصلات

العملية   فيها  تجُرى  التي  الحرارية  الظروف  إلى  بالإضافة   ,Sze & Ng, 2007; Streetman & Banerjee)انتشارها، 

2015). 

 :توجد عدة تقنيات مستخدمة صناعيًا لإجراء الإشابة، تختلف في آلياتها ودقتها وعمق الاختراق الذي تحققه في المادة، ومن أبرزها 
 

 (Thermal Diffusion)  الانتشار الحراري

تعدّ من أقدم طرق الإشابة وأكثرها استخدامًا في تصنيع السيليكون، حيث تسُخّن الرقاقة إلى درجات حرارة عالية تتراوح بين 

800–1100°C مما يسمح لذرات الشوائب بالانتشار وفق قوانين فيك للانتشار (Fick’s Laws)،  وتسُتخدم هذه التقنية للحصول

 .(Wolf, 1990) من الشوائب داخل المادة (Gradient Profiles) على توزيعات متدرجة
 

 (Ion Implantation)  الزرع الأيوني
 

البلورية بعمق يمكن  التقنية الأكثر دقة في الصناعة الحديثة، وتتم عبر قذف أيونات الشوائب بطاقة عالية لتخترق الشبكة  تعُد 

التحكم به بدقة نانومترية. وتتميز هذه التقنية بإمكانية التحكم الكامل في الجرعة وعمق الاختراق، إلا أنها قد تسبب تلفًا بلوريًا 

 .(Sze & Ng, 2007) ارية لاحقة لإصلاحهيتطلب معالجة حر
 

 (Plasma Doping / PLAD)  الإشابة بالبلازما
 

تستخدم البلازما لإدخال الشوائب بجرعات عالية وبكفاءة مناسبة للعمليات منخفضة الطاقة، وتعد من الطرق الحديثة المستخدمة 

مثل المتقدمة  التقنيات  ثلاثية  و  ،.GAA و  FinFET في  للتطبيقات  وملاءمة  بالطاقة  التحكم  في  عالية  بمرونة   الأبعادتمتاز 

(Rahman et al., 2023) . 
 

 (Interfacial Doping)  الإشابة السطحية أو بين الواجهات

 

 

 

تسُتخدم في البنى المتقدمة مثل الهياكل ثنائية الأبعاد والواجهات الأيونية، حيث يتم تركيز الشوائب ضمن طبقات رقيقة جداً عند 

. وتعد تقنية أساسية  bulk materialالسطح أو عند حدود الواجهة، مما يسمح بتعديل الخواص الكهربائية دون التأثير على  

 (.Ishii et al., 2023في تصنيع مواد ثنائية الأبعاد )
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 التحديات الفيزيائية في الإشابة -

ارتفاع و صعوبة التحكم بعمق الانتشار ، وCrystal Non-uniformityالتجانس البلوري   مسألة عدمالفيزيائية تشمل التحديات 

، تأثر الإشابة بحرارة العملية وسرعة إعادة التبلور، ولى نطاقات نانوية بالغة الحساسيةتحول العمليات إو  ،Defectsكثافة العيوب  

 تحسين الإشابة للموثوقية والأداء الصناعي. أهمية عمليةهذه التحديات حيث تبرز 
 

  :فيزياء الانتشار وخواص المواد .2.1.2

(، التي تصف كيفية انتقال الذرات من مناطق التركيز العالي Fick's lawsتخضع حركة الشوائب داخل المادة لقوانين الانتشار )

المنخفض ا  ،إلى  توزيع  علىويعتمد  النهائي  الانتشار  لشوائب  العمليةو  معامل  الحرارةو  زمن  المشابة و  درجة  المادة   طبيعة 

وهو   ،وتؤدي أي انحرافات طفيفة في هذه المعاملات إلى تغيرات كبيرة في الخصائص الكهربائية؛  الضغوط البلورية الداخليةو

 ما يجعل عمليات الإشابة غير الخطية هدفاً مثالياً لاستخدام نماذج الذكاء الاصطناعي القادرة على تحليل العلاقات المعقدة.
 

  :محاكاة المواد والانتشار. 3.1.2

،   Sentaurus TCAD، Silvaco Atlas وتستخدم منصات مثل:، ية أداة أساسية لفهم سلوك الموادتشكل المحاكاة الفيزيائ

COMSOL Multiphysics   تحليل  و حساب توزيع الشوائب  ،ومحاكاة انتقال الحاملات برامج قادرة علىوتتضمنBand 

Structures تقدير وDefect Density وتعُد المحاكاة حجر الأساس لأي نظام  ؛ دراسة تأثير الحرارة والإجهادات البلوريةو

 في اختبار الفرضيات تجريبياً دون إجراء تجارب فعلية. يستخدمذكاء اصطناعي 
 

 (Materials Informaticsالذكاء الاصطناعي في علوم المواد ) .4.1.2
 

 دور الذكاء الاصطناعي في اكتشاف المواد  -

ثورة حقيقية أحدثها الذكاء الاصطناعي في مجالات   وجودLiang et al   (2022  )( و2025. )Madika et alأعمال    تبرز

اكتشاف المواد، حيث يمكن للنماذج تعلم العلاقات بين المتغيرات الكيميائية والبنيوية والخواص الفيزيائية، وتوليد مواد أو تراكيب 

 جديدة بسرعة تفوق الطرق التقليدية. 

 النماذج المستخدمة في هذا المجال   -

لتحليل المواد على مستوى    GNNsالشبكات الرسومية  و،  (DNNsالشبكات العصبية العميقة ):  تشمل النماذج الأكثر انتشاراً 

وقد فجوة الطاقية؛  ج الانحدار المتقدمة للتنبؤ بالـنماذ، وللتنبؤ بالخصائص الكمية  Random Forestو  XGBoostو    ،الذرات

النماذج في تحسين تقدير فجوة الطاقة ) ( وفي تصميم مواد Saeed, 2023؛  Tang, 2023؛  Masuda, 2024ساهمت هذه 

(، يمكن للذكاء الاصطناعي 2022. ) Senoner et alبحسب  ؛ و(Shafian, 2025؛  Khorasani, 2024جديدة لأجهزة الطاقة )

تحسين العمليات التصنيعية ومراقبة الجودة عبر تحليل الضوضاء التشغيلية والمتغيرات الدقيقة، مما يمهّد لإدخال نظم تعلم ذاتي 

 داخل خطوط الإنتاج. 
 

  :الدراسات السابقة .2.2

 . دراسات الذكاء الاصطناعي في أشباه الموصلات 1

( الاستخدام المتزايد للذكاء الاصطناعي في تحليل البيانات الضخمة 2023)  Zhang( و2025)  Zhengتناولت عدة دراسات مثل  

وتوصّلت هذه الدراسات إلى أن التعلم الآلي قادر   ،المتعلقة بصناعة أشباه الموصلات، وفي التنبؤ بخصائص المواد الإلكترونية

 على تبسيط العلاقات المعقدة بين البنية والخواص، لكنه يظل موجهاً نحو التحليل وليس نحو توليد الفرضيات.
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 وخصائص المواد فجوة الطاقةفي تحسين  استخدام الذكاء الاصطناعي. دراسات 2

لتوقع   الذكاء الاصطناعي( استخدام  2023)  Saeed(، و2024)  Tarbi (2023)  ،Tang (2023)  ،Masudaأبحاث    ولتاتن

وقد أظهرت هذه الدراسات فاعلية النماذج في التنبؤ سريعاً بنتائج الإشابة، لكنها لم   ،فجوة الطاقة بدقة عالية في المواد المشابة

 تتناول تصميم الفرضيات التجريبية أو اختيار قيم المتغيرات تلقائياً. 
 

 الذكاء الاصطناعي . دراسات اكتشاف المواد باستخدام 3

( جوانب واسعة من اكتشاف المواد عبر خوارزميات الذكاء 2025) Shafian(، و2022) Madika (2025) ،Liangتناولت 

هذه الدراسات أساساً قوياً لبناء نظام قادر على توليد   وقدمت  ،الاصطناعي، بما في ذلك تحسين البنى الجزيئية وتوجيه التجارب

 فرضيات، لكنها لا تربط هذا المفهوم مباشرة بعمليات الإشابة الفيزيائية. 
 

 . دراسات الإشابة التقليدية وتقنيات تحسين المواد4

( مراجعات مفصلة حول تقنيات الإشابة، 2023)  Rahman(، و2023)  Peng (2021)  ،Yuan (2023)  ،Ohقدمّت أعمال  

وتعد هذه الأعمال مرجعاً للجانب الفيزيائي في البحث، لكنها لا تتضمن   ،تحديات التجانس، تأثير حالة السطح، والإشابة بالبلازما

 لفرضيات الخاصة بعمليات الإشابة. أي توظيف مباشر للذكاء الاصطناعي في توليد ا

 ية فجوة البحث ال. 5

راسات تسهم في اكتشاف وهناك د،لتنبؤ بخصائص المواد بعد الإشابةهناك دراسات تتعامل مع ا  من مراجعة الأدبيات، يتضح أن

لكن لا توجد دراسة تقدم نظاماً متكاملاً يقوم فيه الذكاء الاصطناعي ؛  تناقش مراقبة الجودة في التصنيعوهناك أعمال  ،  مواد جديدة

وهذه هي الفجوة ؛  ية، وتعديلها في دورة تعلم مغلقةبتوليد الفرضيات الخاصة بعمليات الإشابة، واختبارها ذاتياً عبر محاكاة فيزيائ

 التي يستهدف هذا البحث سدهّا. 
 

 اسة:الدر منهجية .3
 

 مقدمة الفصل
 

يقدمّ هذا الفصل المنهجية العلمية المعتمدة في هذا البحث، والتي تقوم على تطوير نموذج تجريبي مبسّط يعتمد على تقنيات الذكاء 

وتحسينها الموصلات  أشباه  في  الإشابة  ظروف  تأثير  لتقدير  الاحتمالية  التحسين  وأساليب  التنبؤية   .الاصطناعي 

نموذج محاكاة ، فإن هذا البحث يوظّف  (COMSOL   أو TCAD ) وبخلاف الأنظمة المعتمدة على المحاكاة الفيزيائية الكاملة

منظومة خفيفة  (Surrogate Model) بديلًا  بناء  يتيح  مما  فيزيائية،  متولدّة وفق علاقات شبه  بيانات اصطناعية  يعتمد على 

 .وسريعة يمكنها اختبار الفرضيات العلمية وتحسينها بصورة تكرارية

 :رئيسية تعمل ضمن دورة تحليل وتجريب مغلقة وحدات ثلاثوتتكوّن المنهجية من 

 reasoning loop تقوم بتوليد فرضيات أولية حول شروط الإشابة، ثم تحسينها تدريجيًا عبر آلية  :الفرضياتوحدة توليد   .1

 .تعتمد على نتائج المحاكاة البديلة

التخطيط   .2 عدد    :التجريبيوحدة  يقلل  موجّه  احتمالي  تحسين  عبر  التجريبية  المتغيرات  من  مجموعة  أفضل  اختيار  تتولى 

 .التجارب ويبحث عن القيم المثلى

البديلة   .3 المحاكاة  حركية   :والتقييموحدة  )التجانس،  النظام  استجابة  لتقدير  المخرجات  متعدد  آلي  تعلم  نموذج  على  تعتمد 

 .الحاملات، وكثافة العيوب(، ثم تحويلها إلى مؤشّر جودة واحد يستخدم في دورة التحسين
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ويعمل هذا النظام بشكل متكامل يسمح بإجراء تجارب افتراضية متتابعة دون الحاجة إلى محاكاة فيزيائية ثقيلة أو بيانات مخبرية، 

 .مما يتيح فهماً مبدئياً للعلاقات التجريبية وتعظيم جودة الإشابة ضمن بيئة بحثية تحاكي اتخاذ القرار العلمي بطريقة آلية وبسيطة
 

   تصميم النظام .1.3
 

 Closed-Loop) يعتمد النظام المقترح على مجموعة من الوحدات الحسابية المترابطة التي تعمل ضمن دورة تحسين مغلقة

Optimization Framework) وتهدف إلى دعم الاستكشاف المنهجي لشروط الإشابة في أشباه الموصلات باستخدام نماذج ،

احتمالية الحساب وخوارزميات تحسين  فيزيائية واقعية، دون   ،بديلة خفيفة  الالتزام بحدود تشغيل  النظام على  ويرتكز تصميم 

مثل كاملة  فيزيائية  محاكاة  على  لتوليد COMSOL أو TCAD الاعتماد  مناسبة  سريعة  بيئة حسابية  توفير  بغرض  وذلك   ،

 :ةوتتكوّن البنية العامة للنظام من الوحدات التالي، الفرضيات واختبارها وتعديلها بشكل تكراري
 

 (Physical Constraints Layer) طبقة القيود الفيزيائية الأولية -1
 

تمثل هذه الطبقة الإطار المرجعي الأولي الذي يقيدّ فضاء البحث ضمن نطاقات تشغيل فيزيائية واقعية لعملية الإشابة، وتسُتخدم 

 :لمنع النظام من اقتراح شروط غير قابلة للتطبيق عمليًا. وتشمل هذه القيود حدوداً عددية للمتغيرات الأساسية، من بينها

 (C° 1000–700) : مجال درجات الحرارة -

 (s 200–10) : مجال أزمنة المعالجة -

 (cm⁻³ 10¹⁸×1–10¹⁵×1) : مجال تركيز الشائبة -
 

، إذ لا يهدف هذا البحث إلى محاكاة TCAD ولا تتضمن هذه الطبقة نماذج فيزيائية تفصيلية مثل قوانين الانتشار أو محاكيات

عملية الإشابة بدقة فيزيائية عالية، بل إلى دراسة قدرة الإطار المقترح على دعم توليد الفرضيات الكمية واختبارها وتحسينها 

 .ضمن دورة تعلم حسابية مغلقة، مع الالتزام بالقيود الفيزيائية العامة
 

 (Probabilistic Hypothesis Generator) وحدة توليد الفرضيات الاحتمالية -2
 

 Belief) تعتمد وحدة توليد الفرضيات في هذا النظام على آلية احتمالية مبسّطة قائمة على أخذ عينات من توزيعات اعتقادية 

Distributions)  إلى استناداً  مبدئيًا  التوزيعات  هذه  وتهُيّأ  الإشابة.  لمتغيرات  المناسبة  القيم  لمجالات  الحالية  التقديرات  تمثلّ 

 .نطاقات تشغيل صناعية شائعة، ثم يتم تحديثها تدريجيًا بناءً على نتائج المحاكاة البديلة
 

 :، تقوم هذه الوحدة بما يلي(Reasoning Loop) وفي كل دورة من دورات التفكير التكراري
 

 .أخذ عينة جديدة من قيم درجة الحرارة، وزمن المعالجة، وتركيز الشائبة من التوزيعات الاعتقادية الحالية -

 .صياغة فرضية كمية تمثل مجموعة الشروط المختارة -

 . تمرير الفرضية إلى وحدة المحاكاة البديلة لتقييم نتائجها -

 .تحديث التوزيعات الاعتقادية بناءً على جودة النتائج المتحصلة -
 

نوع من  حتمية  قواعد  على  الوحدة  هذه  تعتمد  الاستكشاف (If–Then) ولا  بموازنة  تسمح  احتمالية  تحديث  آلية  تستخدم  بل   ،

 .والاستغلال، بما يحاكي بصورة مبسّطة عملية التفكير التجريبي القائمة على التعلمّ التدريجي من النتائج
 

 (Experiment Planning Layer) وحدة التخطيط التجريبي -3

 كآلية منهجية لتخطيط التجارب الحسابية واختيار مجموعات معلمات محسّنة  Bayesian Optimization تم دمج خوارزمية
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بكفاءة عالية. وتقوم هذه الوحدة بتقييم دالة الهدف الموحدة، واقتراح نقاط جديدة في فضاء المعلمات مع تحقيق توازن بين تحسين  

 .الخصائص الفيزيائية المستهدفة وتقليل عدد التجارب المطلوبة
 

وتعُد هذه الوحدة مكمّلة لوحدة توليد الفرضيات، حيث تؤدي دورًا أكثر تنظيمًا ومنهجيًا في استكشاف فضاء المتغيرات، بينما 

 .تركز وحدة توليد الفرضيات على الاستكشاف الاحتمالي التدريجي
 

 (Surrogate Simulation Engine)  وحدة المحاكاة البديلة -4
 

، تم تدريبه باستخدام Random Forest Regressor تعتمد وحدة المحاكاة البديلة على نموذج تعلم آلي متعدد المخرجات من نوع

بناءً على ثلاث مدخلات  الإشابة  تقدير مخرجات عملية  النموذج  هذا  ويتولى  فيزيائية.  بعلاقات شبه  مولدّة  بيانات اصطناعية 

 :رئيسية
 

 (Dopant Concentration)  تركيز الشائبةو  (Time)  زمن المعالجةو (Temperature)  درجة الحرارة
 

 :ويعيد النموذج ثلاثة مخرجات فيزيائية رئيسية
 

التجانس الحاملاتو  (Uniformity Index) مؤشر  العيوبو  (Carrier Mobility) حركية  ، (Defect Density) كثافة 

الفرضيات ودعم  الثقيلة، وتلعب دورًا محوريًا في تقييم  الفيزيائية  الوحدة كبديل إحصائي سريع لمحاكاة الإشابة  وتسُتخدم هذه 

 .عمليات التحسين
 

 (Evaluation and Scoring Engine) وحدة التقييم والتحسين -5
 

خوارزمية ضمن  يسُتخدم  موحّد  جودة  مؤشر  إلى  المتعددة  الفيزيائية  المخرجات  تحويل  الوحدة  هذه   Bayesian تتولى 

Optimization.    ويتم ذلك من خلال تطبيع الخصائص الفيزيائية الثلاثة إلى نطاقات عددية متقاربة، ثم دمجها خطيًا في دالة

 :هدف واحدة على النحو التالي

𝑆𝑐𝑜𝑟𝑒 =
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦

5000
+

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦

2000
−

𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

1𝑥 1011
 

 

وتمكين خوارزمية  المختلفة،  المقاييس  بين  توازن عددي  تحقيق  إلى  تهدف  تقريبية  تطبيع  المستخدمة عوامل  القيم  تمثل  حيث 

 .التحسين من استكشاف فضاء المتغيرات بكفاءة
 

تفسير لاحق  الوحدة مكوّن  مبسّطًا لاتجاهات  (Post-hoc Interpretation Module) كما تتضمن هذه  فيزيائيًا  يقدمّ شرحًا 

 .التحسين والنتائج المتحصلة، دون أن يكون جزءًا من آلية التنبؤ أو التحسين نفسها
 

 (Data Sources)  البيانات .2.3
 

نظرًا  وذلك  المقترح،  الإطار  لاختبار  إنشاؤها خصيصًا  تم  بالكامل  مولدّة  اصطناعية  بيانات  مجموعة  على  البحث  هذا  يعتمد 

، أو بيانات مخبرية صناعية، إضافة إلى COMSOL أو TCAD لصعوبة إتاحة بيانات فعلية من محاكيات فيزيائية متقدمة مثل

أن الهدف من النسخة الحالية للنظام لا يتمثل في تحقيق نمذجة فيزيائية دقيقة لعمليات الإشابة، بل في تقييم فعالية الإطار الحسابي 

 .وآلية التعلم التكراري المعتمدة عليه
 

وقد صُمّمت البيانات الاصطناعية لتمُثلّ السلوك العام للمتغيرات الأساسية المؤثرة في عملية الإشابة، بما يجعلها مناسبة لاختبار 

خوارزميات توليد الفرضيات، والتخطيط التجريبي، والمحاكاة البديلة، والتقييم الإحصائي. وتم توليد مجموعة بيانات مكوّنة من 
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عينّة باستخدام لغة بايثون ومكتباتها العلمية، بالاعتماد على علاقات شبه فيزيائية مبسّطة تعكس الاتجاهات المعروفة في   2000

 .عمليات الانتشار الحراري والإشابة، دون الالتزام بنماذج فيزيائية معملية دقيقة
 

وتشمل هذه العلاقات تأثيرات غير خطية بين المتغيرات، مثل ازدياد كثافة العيوب عند ارتفاع تركيز الشائبة أو تجاوز درجات 

حرارة مثالية، وتحسّن حركية الحاملات ضمن نطاقات حرارية معينّة، وتدهور التجانس في الحالات التشغيلية المتطرفة. كما تم  

لتمثيل عدم اليقين والاضطرابات الطبيعية المرتبطة بالعمليات الفيزيائية، بما يحدّ من الحتمية  تضمين مكونات ضوضاء تجريبية

 .المطلقة في البيانات ويزيد من واقعية بيئة الاختبار
 

وقد استخُدمت هذه البيانات حصريًا لتدريب النموذج البديل وتقييم أداء الإطار المقترح، مع التأكيد على أن القيم الناتجة تعبّر عن 

 .اتجاهات وسلوكيات نسبية وليست عن قياسات فيزيائية حقيقية

 المتغيرات المستخدمة في التجربة ومعانيها الفيزيائية  (1)جدول 

 التفسير العلمي  التمثيل العددي في النموذج  المتغير الفيزيائي 

 درجة الحرارة

(Temperature_C) 

تتحكم في تنشيط الشوائب ورفع معامل الانتشار،  C° 1000–700مستمر: 

 .وتؤثر مباشرة في التجانس وكثافة العيوب

يحدد المدة الزمنية المسموح فيها بانتشار الشوائب،   ثانية   200–10مستمر:  (Time_s) زمن المعالجة

 .مما يؤثر على عمق الاختراق وانتظام التوزيع

 Dopant) تركيز الإشابة

Concentration) 

يمثل كثافة ذرات الشائبة داخل المادة، ويؤثر على   ³سم/ذرة 10¹⁸– 10¹⁵مستمر: 

ناقلية الحاملات، مع زيادة احتمالية التبعثر والعيوب  

 .عند التركيزات المرتفعة

 مؤشر التجانس

(Uniformity Index) 

يقيس مدى انتظام توزيع الشوائب داخل المادة بعد  ناتج محاكاة بديلة 

 .انتهاء عملية الإشابة

 Carrier) حركية الحاملات

Mobility) 

تتأثر بآليات التبعثر الشائبي والفونوني، وتنخفض   ناتج محاكاة بديلة 

 .عادةً عند زيادة تركيز الشائبة

 Defect) كثافة العيوب

Density) 

تزداد عند ارتفاع درجات الحرارة أو التركيزات  ناتج محاكاة بديلة 

 .العالية نتيجة إجهاد الشبكة البلورية

 

 (General Algorithmالخوارزمية العامة ) .3.3

تجمع  (Closed-Loop Learning Framework) تعتمد الخوارزمية العامة للنظام المقترح على دورة تعلم تكرارية مغلقة

دعم  بهدف  الاحتمالية،  التحسين  وخوارزميات  الآلي،  التعلم  على  المعتمدة  البديلة  والمحاكاة  الاحتمالي،  الفرضيات  توليد  بين 

الاستكشاف المنهجي لشروط الإشابة في أشباه الموصلات. وقد صُمّمت الخوارزمية بحيث تحاكي بصورة مبسّطة منهجية التفكير 

 .علمّ التدريجي من النتائج، مع الحفاظ على قابلية التنفيذ ضمن بيئة حسابية خفيفة تعتمد على بيانات توليديةالتجريبي القائمة على الت

الفيزيائية  المعرفة  التي تفرضها طبقة  بالقيود  الالتزام  الخوارزمية من ثلاث وحدات رئيسية تعمل بشكل مترابط، مع  وتتكوّن 

 :الأولية
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 (Probabilistic Hypothesis Generator) وحدة توليد الفرضيات الاحتمالية .1

 Bayesian Optimization وحدة التخطيط التجريبي باستخدام .2

 (Surrogate Simulation and Evaluation) وحدة المحاكاة البديلة والتقييم .3
 

ويتم تنفيذ العملية ضمن دورة مغلقة تسمح بتحديث الفرضيات وتحسينها تدريجيًا عبر التكرار، وصولًا إلى شروط تشغيل تحقق  

 .توازنًا مناسبًا بين مؤشر التجانس، وحركية الحاملات، وكثافة العيوب
 

 : تهيئة النظام 1الخطوة 
 

وزمن  الحرارة،  درجة  تشمل  والتي  الإشابة،  لعملية  الأساسية  للمتغيرات  الفيزيائية  التشغيل  نطاقات  بتحديد  الخوارزمية  تبدأ 

، وهو نموذج تعلم آلي متعدد المخرجات (Surrogate Model) المعالجة، وتركيز الشائبة. كما يتم تحميل نموذج المحاكاة البديلة 

ب على بيانات اصطناعية، ويسُتخدم لتقدير العلاقة بين متغيرات الإشابة ومخرجاتها الفيزيائية  .مدرَّ
 

 : توليد الفرضية الأولية2الخطوة 
 

تمثل هذه الخطوة نقطة البداية الاستكشافية للنظام، حيث يتم توليد فرضية أولية من خلال أخذ عينات من توزيعات اعتقادية مبدئية  

تمثل تقديرات أولية لمجالات القيم المناسبة لمتغيرات الإشابة. وتصُاغ الفرضية على شكل مجموعة كمية من القيم )درجة الحرارة،  

 .تم تمريرها إلى وحدة المحاكاة البديلة للتقييمالزمن، التركيز( ي
 

 : تنفيذ المحاكاة البديلة 3الخطوة 
 

ر الفرضية المقترحة إلى المحاكي البديل  :، الذي يقوم بتقدير المخرجات الفيزيائية الثلاثة التالية(Surrogate Simulator)   تمُرَّ

 (Defect Density)  كثافة العيوبو  (Carrier Mobility)،حركية الحاملات ، و(Uniformity Index)  مؤشر التجانس 

 .ويتم الحصول على هذه القيم بصورة فورية، مما يتيح تنفيذ دورات تجريبية متتابعة دون الحاجة إلى محاكاة فيزيائية ثقيلة
 

 : تقييم الفرضية 4الخطوة 
 

 :تقُيَّم نتائج كل تجربة باستخدام دالة هدف موحّدة تجمع الخصائص الفيزيائية الثلاثة في مؤشر جودة واحد وفق العلاقة التالية
 

𝑺𝒄𝒐𝒓𝒆 =
𝑼𝒏𝒊𝒇𝒐𝒓𝒎𝒊𝒕𝒚

𝟓𝟎𝟎𝟎
+

𝑴𝒐𝒃𝒊𝒍𝒊𝒕𝒚

𝟐𝟎𝟎𝟎
−

𝑫𝒆𝒇𝒆𝒄𝒕 𝑫𝒆𝒏𝒔𝒊𝒕𝒚

𝟏𝒙𝟏𝟎𝟏𝟏
 

 

 .ويهدف هذا المؤشر إلى تحويل الأهداف المتعددة والمتعارضة إلى معيار عددي واحد مناسب لخوارزميات التحسين الاحتمالية 
 

 : التخطيط التجريبي والتحسين5الخطوة 
 

لاستكشاف فضاء المتغيرات واقتراح مجموعات جديدة من القيم التجريبية بناءً  Bayesian Optimization تسُتخدم خوارزمية

 واستخدام دالة اقتناء   (Posterior Distribution) على نتائج التجارب السابقة، من خلال نمذجة التوزيع الاحتمالي اللاحق 

(Acquisition Function)،   تشغيل حيث إلى شروط  الوصول  وتسريع  المطلوبة  التجارب  عدد  تقليل  في  الآلية  هذه  تسهم 

 .محسّنة

 : تحديث الفرضيات عبر دورة التفكير التكراري 6الخطوة 
 

بعد كل تجربة، يتم تحديث التوزيعات الاعتقادية المستخدمة في توليد الفرضيات استناداً إلى جودة النتائج المتحصلة، مما يؤدي  

ر هذه العملية عدداً محدداً من المرات )خمس دورات في  إلى تعديل تدريجي لاحتمالات اختيار القيم في التكرارات اللاحقة. وتكُرَّ

 .ما يسمح بتحقيق توازن بين الاستكشاف والاستغلال دون الاعتماد على قواعد حتمية ثابتةالإعداد الحالي(، ب
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 : تحديد أفضل فرضية 7الخطوة 
 

 :تتوقف دورة التحسين عند تحقق أحد الشروط التالية

 (Score) الوصول إلى أفضل قيمة لمؤشر الجودة .1

 استقرار النتائج وعدم تحسّنها عبر التكرارات  .2

 بلوغ الحد الأعلى لعدد التكرارات المحدد مسبقًا  .3

 مراحل الخوارزمية وتوصيف كل مرحلة  (2)جدول 

 الوصف المرحلة 

 تحديد نطاقات المتغيرات وتحميل نموذج المحاكاة البديلة تهيئة النظام 

 أخذ عينات من توزيعات اعتقادية وصياغة فرضية كمية  توليد الفرضية 

 تقدير المخرجات الفيزيائية عبر النموذج البديل  المحاكاة

 حساب مؤشر الجودة الموحّد  التقييم 

 Bayesian Optimization اقتراح قيم جديدة باستخدام التخطيط التجريبي 

 تحديث الفرضيات احتماليًا عبر دورة تعلم مغلقة  التفكير التكراري

 اختيار أفضل شروط إشابة متاحة الوصول للحل 

 

 

 (General Algorithm Flow Diagram) المخطط العام لمراحل لخوارزمية  (2)الشكل 
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 (Evaluation Metrics)  معايير التقييم  .4.3

يعتمد تقييم الفرضيات في النظام المقترح على مجموعة من المعايير المتكاملة التي تغطي الجوانب الفيزيائية والحسابية والعلمية، 

وذلك بهدف تقديم تقييم شامل لجودة النتائج المتحصلة من دورة التعلم المغلقة. وقد تم اختيار هذه المعايير بما يتوافق مع قدرات 

 .، وحدود البيانات الاصطناعية، وطبيعة نموذج المحاكاة البديلة المستخدمالنظام الفعلية

 (Physical Metrics)  المعايير الفيزيائية -1

البديلة،  الناتجة عن عملية الإشابة كما يتم تقديرها بواسطة نموذج المحاكاة  تسُتخدم هذه المعايير للحكم على جودة الخصائص 

 :وتشمل الخصائص الفيزيائية الأساسية التالية

- Uniformity Index  :  يقيس مدى انتظام توزيع الشوائب داخل المادة بعد عملية الإشابة، ويعُد مؤشرًا مهمًا على جودة

 .التحكم في عملية الانتشار

- Defect Density  : الحرارة لتقييم تأثير درجات  الناتجة عن ظروف الإشابة، ويسُتخدم  البنيوية  العيوب  كثافة  يعبّر عن 

 .المرتفعة أو التركيزات العالية للشوائب

- Carrier Mobility  : ،تعكس قدرة الحاملات الكهربائية على الحركة داخل المادة، وتتأثر بآليات التبعثر الشوائبي والحراري

 .مما يجعلها مؤشرًا مباشرًا على جودة المادة الناتجة

 .وتعُد هذه المعايير الثلاثة المخرجات الفيزيائية الأساسية للنظام، ويتم استخدامها مباشرة في عمليات التقييم والتحسين

 (Computational Metrics) المعايير الحسابية -2

 :تركّز هذه المعايير على تقييم الأداء الحسابي للنظام وكفاءته أثناء تنفيذ دورة التحسين، وتشمل

 .عدد التجارب الحسابية اللازمة للوصول إلى شروط محسّنة، كمؤشر على كفاءة التخطيط التجريبي -

 .عند تكرار التجارب أو إدخال اضطرابات طفيفة على المدخلات (Numerical Stability) استقرار النتائج العددية -

بما يعكس قدرة النظام على  ،  Bayesian Optimization أثناء دورات (Convergence Behavior) سلوك التقارب -

 .الوصول إلى حلول مستقرة خلال عدد محدود من التكرارات

 (Hypothesis Quality Metrics) المعايير العلمية لجودة الفرضية -3

 :تسُتخدم هذه المعايير لتقييم الفرضيات المتولدة من منظور علمي ومنهجي، مع الأخذ بعين الاعتبار حدود البيئة المحاكاة، وتشمل

تعُد المعيار الأساسي في هذا العمل، حيث تكون جميع الفرضيات قابلة للاختبار داخل بيئة    :(Testability) قابلية الاختبار -

 .المحاكاة البديلة

يتم تقييم الفرضيات من حيث التزامها بالقيود الفيزيائية العامة :(Partial Physical Validity) الواقعية الفيزيائية الجزئية -

 .واتجاهات السلوك المعروفة، دون الادعاء بمحاكاة فيزيائية دقيقة

تقُيَّم الفرضيات ضمن نطاق البيانات الاصطناعية والافتراضات   :(Limited Generalizability) إمكانية التعميم المحدودة -

 .المستخدمة، مع الإشارة إلى أن تعميم النتائج على مواد أخرى أو عمليات إشابة مختلفة يتطلب بيانات ونماذج إضافية

  وفي التطبيق الحالي، يتم تحقيق معيار قابلية الاختبار بصورة كاملة ضمن البيئة المحاكاة، بينما تطُبَّق معايير الواقعية الفيزيائية 

 . وإمكانية التعميم ضمن حدود النموذج والبيانات المستخدمة، دون تجاوز نطاق صلاحيتها
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 :الأساليب الإحصائية المستخدمة .5.3

لتعزيز موثوقية النتائج المستخلصة من نموذج الإشابة، وتأكيد أن التحسينات التي يحققها النظام ليست نتيجة صدفة أو انحياز في 

لتقييم استقرار النموذج، وقياس حساسية الفرضيات   البيانات، يعتمد هذا البحث على مجموعة من الأساليب الإحصائية المتقدمة

 .للتغيرات، وتحليل العلاقات بين المتغيرات، وتحديد مستوى الثقة في النتائج

هذه الإجراءات ضرورية لأن الإشابة في أنصاف النواقل عملية حسّاسة لأي تغيّر في المعلمات الفيزيائية، كما أن نماذج تعتبر  

 .التعلم الآلي مهما كانت دقتها تحتاج إلى تقييم إحصائي صارم لضمان الاعتمادية العلمية

 :وفيما يلي شرح مفصل لكل أسلوب إحصائي مستخدم

  (Pearson & Spearman Correlations)الخطية والرتبية /معاملات الارتباط بيرسون وسبيرمان -1

الخصائص الناتجة )مثل الحركة، و  معلمات الإشابة )مثل جرعة الإشابة ودرجة الحرارة(  يستخدم الارتباط لتحليل العلاقة بين

في فهم بنية العلاقة  اويساعد وجودهبينما معامل سبيرمن يقيس الرتبية، ويقيس معامل بيرسون الخطية  التجانس، كثافة العيوب(

 .فرضيات التاليةلل دعما مما يشكل،(Mobility, Defects, etc) بين مدخلات الإشابة ومخرجاتها

 (Monte Carlo Simulation)  المحاكاة العشوائية الاحتمالية /  محاكاة مونتِ كارلو -2

ثم قياس استقرار   تعتمد هذه الطريقة على توليد آلاف السيناريوهات العشوائية عبر إدخال تغيرات صغيرة في مدخلات الإشابة،

الناتجة النماذج، وقياس الحساسية تجاه تغير المعلماتبسمح  ي، مما  النتائج  اليقين في  الكشف عن حدود الاستقرار و  تحليل عدم 

التأكد من أن الفرضية المقترحة تظل فعّالة حتى عند حدوث تغيرات صغيرة في التركيز أو ، وهو يساهم في  الفيزيائي للفرضيات

 .الحرارة أو الزمن

 (Sensitivity Analysis)الحساسية تحليل  -3

النتائج لأي تغير في ، وتحديد المعلمات الأكثر تأثيرًا على الخصائص الإلكترونية يهدف هذا التحليل إلى قياس مقدار استجابة 

معرفة ما إذا كانت الحركة الإلكترونية ، ويساهم في  تحسين عملية التخطيط التجريبي عبر التركيز على أهم العوامل، ومعلمة معينة

 دق.يساعد النظام على تحسين فرضياته بشكل أسرع وأمما  تتأثر أكثر بدرجة الحرارة أم بتركيز الإشابة،

 (Confidence Intervals)  فترات الثقة -4

قدرة النظام على تقديم نتائج مستقرة ، وحدود التغير الطبيعي المتوقعمن حيث    مدى موثوقية النتائج تسُتخدم فترات الثقة لتحديد

ويساعد على   % من النتائج المتوقعة يجب أن تقع ضمن هذا النطاق 95% تعني أن  95فترة ثقة    :على سبيل المثال،  ومتكررة

 .يمكن الاعتماد عليه  تقع ضمن نطاق و لتأكد من أن التحسينات المحققة ليست فريدة أو شاذة، ا

 الأساليب الإحصائية المستخدمة  (3)جدول 

 دوره في البحث التسمية العربية  الأسلوب

Pearson/Spearman كشف العلاقات بين الإشابة والخصائص  معاملات الارتباط 

Monte Carlo Simulation  قياس استقرار الفرضيات تحت الضوضاء  محاكاة مونتِ كارلو 

Sensitivity Analysis  تحديد المعلمات الأكثر تأثيرًا  تحليل الحساسية 

Confidence Intervals تقدير موثوقية واستقرار النتائج  فترات الثقة 
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 :النتائج والمناقشة .4

يستعرض هذا الفصل النتائج التي تم الحصول عليها من النظام المقترح لاستخدام الذكاء الاصطناعي في تحسين عملية الإشابة 

لنتائج بناء نموذج المحاكاة  ،في أشباه الموصلات ، وتحسين ظروف الإشابة  (Surrogate Model)  ويتضمن الفصل عرضاً 

، وتنفيذ آلية توليد الفرضيات التجريبية آلياً، بالإضافة إلى مجموعة من الرسوم Bayesian Optimizationباستخدام خوارزمية  

 .البيانية التي تعكس العلاقات الفيزيائية بين المتغيرات المختلفة

 نتائج توليد البيانات الاصطناعية .1.4

عينّة، صُمّمت لتمثيل السلوك   2000مكوّنة من   (Synthetic Dataset) تم في هذا البحث إنشاء مجموعة بيانات اصطناعية

وتشمل هذه المتغيرات: درجة   ،العام لعملية الإشابة في أشباه الموصلات تحت تغيّر مجموعة من المتغيرات التشغيلية الأساسية

 ، إضافة إلى المخرجات الفيزيائية المتمثلة في مؤشر التجانس(atoms/cm³) ، تركيز الشائبة (s)  ، زمن المعالجة(C°) الحرارة

(Uniformity Index)وحركية الحاملات ، (Carrier Mobility)وكثافة العيوب ،  (Defect Density). 

وقد تم توليد هذه البيانات باستخدام علاقات شبه فيزيائية مبسّطة مستوحاة من الاتجاهات العامة لنماذج الانتشار الحراري وتأثيرات 

أو محاكيات دقيقة  فيزيائية  الاعتماد على معادلات  المعروفة، دون  وتم تضمين مكونات ضوضاء إحصائية  ،TCADالإشابة 

موزعة غاوسيًا على المخرجات الفيزيائية لمحاكاة عدم اليقين التجريبي والاضطرابات الطبيعية المرتبطة بالعمليات التصنيعية، 

 .بما يحدّ من الحتمية المطلقة ويزيد من واقعية البيانات المستخدمة

البديلة المحاكاة  نموذج  لتدريب  مناسبة  بيانات  قاعدة  إنشاء  إلى  الأسلوب  هذا  أداء  (Surrogate Model) ويهدف  واختبار 

اتجاهات نسبية   الناتجة تعبّر عن  القيم  التأكيد على أن  التجريبي، مع  الفرضيات والتخطيط  توليد  المستخدمة في  الخوارزميات 

 .وسلوكيات عامة، وليست عن قياسات فيزيائية حقيقية

 

 لقطة شاشة لجزء من البيانات المولدة  (3)الشكل 
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 العوامل التشغيلية المستخدمة في توليد البيانات  (4)جدول 

 سبب التضمين  نطاق التوليد  العامل 

 C° 1000–700 درجة الحرارة 
تمثيل تأثير التنشيط الحراري وازدياد الانتشار وارتفاع احتمالية 

 تشكّل العيوب عند القيم المرتفعة 

 محاكاة تأثير مدة الانتشار على التجانس وكثافة العيوب s 200–10 زمن المعالجة 

 atoms/cm³ 10¹⁷×5 – 10¹⁵×1 تركيز الإشابة 
تمثيل تأثير التبعثر الشوائبي وتحسّن أو تدهور الخصائص  

 الإلكترونية

 تقييم انتظام توزيع الشوائب  ناتج محاكاة بديلة  مؤشر التجانس 

حركية  

 الحاملات
 قياس جودة النقل الإلكتروني ناتج محاكاة بديلة 

 تمثيل تأثير الإجهاد الحراري والتركيزات العالية  ناتج محاكاة بديلة  كثافة العيوب

 

 Surrogate Simulation  نتائج تدريب نموذج .2.4

متعدد المخرجات بهدف تعلمّ العلاقة بين متغيرات الإشابة الأساسية )درجة  Random Forest Regressor تم تدريب نموذج 

البيانات الاصطناعية   الناتجة، وذلك بالاعتماد على مجموعة  الحرارة، زمن المعالجة، وتركيز الشائبة( والمخرجات الفيزيائية 

% من البيانات،  20مجموعة اختبار مستقلة تمثل  % من العينات، و80المولدّة. وقد جرى تقسيم البيانات إلى مجموعة تدريب تمثل  

 .دون أي تداخل بين المجموعتين، مع الحفاظ على نفس البنية الإحصائية للمتغيرات

يسُتخدم هذا التقسيم لتقييم قدرة النموذج على التعميم ضمن نطاق البيانات المتاحة، وليس لاختبار تعميمه خارج حدود العلاقات 

 .شبه الفيزيائية المستخدمة في توليد البيانات

 أداء النموذج على مجموعة الاختبار 

 ومتوسط مربع الخطأ (R²) ( مقاييس الأداء المسجّلة للنموذج على بيانات الاختبار، باستخدام معامل التحديد5يوضح جدول )

(MSE): 

 على بيانات الاختبار  Random Forest أداء نموذج( 5)جدول 

 R² Score MSE المتغير 

 منخفض  0.9999 (Uniformity Index)  مؤشر التجانس

 منخفض  0.9861 (Carrier Mobility)  حركية الحاملات

 منخفض  0.9977 (Defect Density)  كثافة العيوب

 

هذه النتائج قدرة النموذج على تعلمّ العلاقات الداخلية الموجودة في البيانات الاصطناعية بدقة عالية، وهو أمر متوقع نظرًا  تظهر

هذه المؤشرات ملاءمة النموذج لاستخدامه كمحاكٍ   وتدعم  ،لاعتماد البيانات على علاقات شبه فيزيائية محددة ومحدودة التعقيد 

 .بديل سريع ضمن إطار البحث الحالي، دون الادعاء بتمثيل السلوك الفيزيائي الحقيقي بدقة كاملة
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 (Surrogate Simulator) نتائج بناء المحاكي البديل

بعد الانتهاء من تدريب النموذج، تم دمجه ضمن محاكي حسابي قادر على استقبال قيم درجة الحرارة، وزمن المعالجة، وتركيز 

 ، وحركية الحاملات (Uniformity Index) الشائبة، وإرجاع التقديرات المقابلة للمخرجات الفيزيائية الثلاثة: مؤشر التجانس

(Carrier Mobility)وكثافة العيوب ، (Defect Density). 
 

وقد تم تزويد المحاكي بواجهة إخراج منسّقة على شكل جدول نصي باللغة الإنجليزية، تهدف إلى تسهيل قراءة النتائج ومتابعة 

سلوك النظام أثناء دورات التوليد والتقييم والتحسين. ويسُتخدم هذا المحاكي حصريًا لدعم دورة التعلم المغلقة وتقييم الفرضيات 

 . TCAD ليس كبديل مباشر لمحاكيات فيزيائية متقدمة مثلداخل الإطار المقترح، و
 

 

 مثال على ناتج المحاكاة البديلة لشروط إشابة محددةلقطة شاشة  (4)الشكل 

(atoms/cm³) 10¹⁶× 1، تركيز شائبة s 80، زمن معالجة C° 850درجة حرارة 

 Bayesian Optimizationنتائج تحسين الإشابة باستخدام  . 3.4

بهدف البحث الذكي عن أفضل مجموعة من معايير الإشابة التي تحقّق توازناً    Bayesian Optimizationتم تطبيق خوارزمية  

التالي من  المجال  التحسين على  العيوب. واعتمدت عملية  كثافة  الحاملات، وانخفاض  البلوري، وارتفاع حركية  التجانس  بين 

 :المعاملات

 (cm⁻³ 10¹⁸×1 – 10¹⁵×1)  تركيز الدوبانت، (s 200–10)  زمن الانتشار، (C°1000–700)  درجة الحرارة

جولة تحسين(، كما يظهر في سجل النتائج. وبعد اكتمال البحث،    15للتنويع الأولي و  5تجربة تلقائية ) 20وقد أجرت الخوارزمية  

 :توصّلت الخوارزمية إلى أفضل توليفة من المعلمات كما يلي

 القيم المثلى المستخرجة من خوارزمية التحسين 

 C°894.64 :درجة الحرارة المثلى

 s 125.86 :زمن الإشابة الأمثل

 atoms/cm³ 10¹⁶×1.50 :تركيز الدوبانت الأمثل

 :، أعطى النظام المخرجات الفيزيائية التالية(Surrogate Model) وعند تمرير هذه القيم إلى نموذج المحاكاة البديل

 القيمة  المخرج الفيزيائي 

Uniformity Index 4,183.28 

Carrier Mobility 1,615.10 cm²/V·s 

Defect Density 1.17×10¹⁰ cm⁻³ 
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هذه النتائج حالة متوازنة تجمع بين مستوى مقبول من التجانس، وارتفاع نسبـي في حركية الحاملات، مع كثافة عيوب تقع   تظهر

 .ضمن الحدود الفيزيائية المتوقعة في عمليات الإشابة الحرارية عالية الجرعة
 

 

 :optimizer لقطة شاشة لنتائج (5)الشكل 

 (Scientific Explanation Module)  تفسير النتائج. 4.4

تعتمد على مجموعة من القواعد الفيزيائية  (Post-hoc Explanation Module) تتضمن المنظومة وحدة تفسير علمي لاحقة

ولا  ،المبسّطة والمحددة مسبقًا، وتهدف إلى ربط القيم العددية لمتغيرات الإشابة والمخرجات الفيزيائية بتفسيرات وصفية مفهومة 

 .تشارك هذه الوحدة في عملية التنبؤ أو التحسين، وإنما تسُتخدم حصريًا لأغراض التفسير وتوضيح سلوك النظام

فعلى سبيل   ،في المرحلة الأولى، تقوم الوحدة بتحليل متغيرات الإشابة المدخلة عبر مقارنتها بنطاقات فيزيائية مرجعية معروفة

 900–800) المثال، يتم تفسير درجة الحرارة وفق قواعد شرطية بسيطة، حيث إذا وقعت قيمة درجة الحرارة ضمن المجال

°C)يتم إصدار تفسير من الشكل ،: 

“Temperature within the activation window : good dopant activation and uniformity.” 

أما إذا كانت درجة الحرارة أقل من هذا النطاق أو أعلى منه، فيتم تعديل التفسير ليعكس احتمال ضعف تنشيط الشوائب أو زيادة 

من حيث كونه قصيرًا، أو  (Time_s) وبطريقة مشابهة، يتم تحليل زمن المعالجة  ،الإجهاد الشبكي وتشكّل العيوب، على التوالي

 .ضمن المجال الأمثل، أو طويلًا، مع ربط كل حالة بتفسير يتعلق بعمق الانتشار واحتمالية تشكّل العيوب
 

إلى نقص في عدد  قد يؤدي  أنه  المنخفض على  التركيز  يفُسَّر  إلى نطاقات محددة، حيث  استناداً  الشائبة  تحليل تركيز  يتم  كما 

المرتفع بازدياد  التركيز  الناقلية وكثافة العيوب، في حين يرُبط  المتوسط مؤشرًا على توازن بين  التركيز  يعُد  الحاملات، بينما 

 .وتدهور حركية الحاملات (impurity scattering) ظواهر التبعثر
 

 في المرحلة الثانية، تنتقل وحدة التفسير إلى تحليل المخرجات الفيزيائية الناتجة عن المحاكاة البديلة، والتي تشمل مؤشر التجانس

(Uniformity Index)وحركية الحاملات ،   (Carrier Mobility)وكثافة العيوب ، (Defect Density).  ويتم توليد عبارات

 :تفسيرية مباشرة تعتمد على القيم العددية الناتجة، مثل
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"Mobility value indicates good carrier transport under the given conditions." 

"Defect density reflects lattice quality under extended diffusion time." 

ء وتتغير هذه العبارات تلقائيًا وفق القيم المحسوبة، بما يوفر تفسيرًا وصفيًا مبسّطًا يدعم فهم نتائج التجارب الافتراضية دون الادعا 

 باشتقاق استنتاجات فيزيائية دقيقة أو شاملة

 

 ناتج في الطرفية ر الذي يقدمه النموذج للتفسيال لقطة شاشة من (6)الشكل 

 (Hypothesis Generator) نتائج نظام توليد الفرضيات. 5.4
 

تهدف إلى استكشاف  (Iterative Reasoning Loop) تم تقييم أداء نظام توليد الفرضيات من خلال تشغيل دورة تفكير تكرارية

شروط الإشابة المناسبة بصورة تدريجية، بالاعتماد على التعلمّ من نتائج المحاكاة البديلة. ويتكوّن هذا النظام من آلية احتمالية 

تمثلّ التقديرات الحالية لمجالات القيم   (Belief Distributions) لتوليد الفرضيات، يتم فيها أخذ عينات من توزيعات اعتقادية

 .المناسبة لمتغيرات الإشابة الأساسية، وهي درجة الحرارة، وزمن المعالجة، وتركيز الشائبة
 

في بداية الدورة، تهُيّأ التوزيعات الاعتقادية بقيم ابتدائية واسعة تعكس عدم اليقين الأولي حول أفضل شروط الإشابة. وفي كل 

تكرار، يقوم النظام بتوليد فرضية كمية جديدة عبر أخذ عينة من هذه التوزيعات، ثم يتم اختبار الفرضية باستخدام المحاكي البديل، 

بعد ذلك، تقُيَّم نتائج الفرضية ،  ات الفيزيائية المتمثلة في مؤشر التجانس، وحركية الحاملات، وكثافة العيوبالذي يقدرّ المخرج

باستخدام دالة الجودة الموحدة المعتمدة في النظام، ويتم استخدام هذه التقييمات لتحديث التوزيعات الاعتقادية، بحيث تزداد احتمالية 

التعلّ  مبسّطًا من  الآلية شكلًا  اللاحقة. وتمُثلّ هذه  التكرارات  أفضل في  نتائج  إلى  أدت  التي  القيم  القائم على اختيار  التكراري  م 

 .الموازنة بين الاستكشاف والاستغلال، دون الاعتماد على قواعد حتمية ثابتة
 

تم تنفيذ خمس دورات متتالية من حلقة التفكير التكراري، وأظهرت النتائج تقاربًا تدريجيًا في القيم المقترحة لمتغيرات الإشابة، 

حيث اتجهت الفرضيات المتولدة نحو نطاقات تشغيل أكثر استقرارًا من حيث تحسّن مؤشر التجانس وارتفاع حركية الحاملات 

اليقين مع الحد من كثافة العيوب. ك التكرارات، مما يشير إلى تضييق مجال عدم  القيم المقترحة عبر  ما لوحظ انخفاض تشتت 

 .وزيادة تركّز التوزيعات الاعتقادية حول شروط تشغيل محسّنة
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وتظُهر هذه النتائج أن نظام توليد الفرضيات قادر على الاستفادة من التغذية الراجعة الناتجة عن المحاكاة البديلة لتوجيه عملية  

الاستكشاف بصورة تدريجية، بما يدعم استخدامه كأداة مساعدة في البحث التجريبي الافتراضي. ومع ذلك، تجدر الإشارة إلى أن  

دود البيانات الاصطناعية والنماذج المبسّطة المستخدمة، ولا يقُصد به استبدال الخبرة البشرية أو النماذج هذا النظام يعمل ضمن ح

 .الفيزيائية التفصيلية، بل دعمها في مراحل الاستكشاف الأولي

 

 مخطط عمل وحدة توليد الفرضيات  (7)الشكل 
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 ضلفلتوليد الفرضية الا دورات 5من  loop لقطة شاشة (8)الشكل 

 الرسوم البيانية وتحليل العلاقات الفيزيائية. 6.4

 :وهي كما يلي رسومات رئيسية توضّح العلاقات بين المتغيرات الأساسية 4تم إنشاء 

 (Temperature vs Uniformity) تأثير درجة الحرارة على التجانس .1.6.4

ومؤشر التجانس البلوري الناتج عن عملية الإشابة. ويظهر  (C°) يعرض الشكل العلاقة بين درجة حرارة المعالجة الحرارية

المنحنى سلوكًا غير خطي متعدد المراحل يعكس التفاعل المعقد بين تنشيط الشوائب، وعمليات إعادة ترتيب الشبكة، وميكانيكيات 

 .الانتشار الحراري

 (C°730–700المرحلة الأولى: استقرار عند درجات الحرارة المنخفضة ) 

(، ما يشير إلى أن تنشيط الشوائب محدود، وأن إعادة ترتيب الشبكة 5030يبقى مؤشر التجانس في مستوى منخفض نسبيًا )~

 .البلورية غير كافية لإزالة العيوب السطحية

 ( C°780–740المرحلة الانتقالية: تحسن تدريجي ) 

 :يرتفع مؤشر التجانس تدريجيًا مع زيادة الحرارة، وهو سلوك متوقع لأن

 يزداد أسيًا مع درجة الحرارة،  D(T)معامل الانتشار  -
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 .cluster formation الشبكة البلورية تصبح أكثر قدرة على إعادة التنظيم وتقليل التكتل -

 (C°805–790) :الذروة الحرارية المثلى 

 :(، وهي منطقة يحُتمل أن تكون درجة الحرارة فيها مثالية لتحقيق كلٍّ من5100يصل التجانس إلى أعلى قيمه )~

 للشوائب، Activation أعلى معدل تنشيط -

 أعلى قدرة للشبكة على إعادة ترتيب نفسها،  -

 .أقل توليد إضافي للعيوب -

 .Rapid Thermal Annealing (RTA) هذه المنطقة تمثل غالبًا نقطة شبه مثالية لعمليات الإشابة السريعة

 (C°860–810الانخفاض بعد الذروة )  (4

 :بعد تجاوز الذروة، ينخفض مؤشر التجانس، وهو سلوك فيزيائي معروف سببه

 ،Thermo-mechanical stresses بدء ظهور إجهادات حرارية -

 احتمالية توليد عيوب جديدة أثناء التبريد،  -

 .يؤدي إلى فقدان التجانس الداخلي Overshoot انتشار مفرط  -

 (C°1000–880منطقة الاستقرار المرتفع ) (5

 :( كمستوى ثابت نسبيًا، مما يشير إلى حالة توازن جديدة حيث5067يظهر المستوى النهائي )~

 يستمر الانتشار،  -

 لكن الطبيعة الحركية للشبكة تحدّ من المزيد من التحسن، -

 .حراري مستقر plateau ويصل النظام إلى -

 الدلالة العلمية للشكل 

، وهي منطقة C°800يظُهر المنحنى أن التجانس لا يزداد خطيًا بزيادة درجة الحرارة، بل يتبع نمطًا يتضمن نقطة مثلى بحدود  

 .تشتهر في عمليات الإشابة )خاصة لإشابة الفوسفور والزرنيخ في السيليكون( بأنها الأكثر تحقيقًا للتجانس قبل بدأ تدهور البنية

 .في التنبؤ بسلوك الإشابة Surrogate Model النموذج ينجح في التقاط هذا السلوك المعقد، مما يعزز من مصداقية الـ

 

 على التجانس  درجة الحرارة تأثير (9)الشكل 
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 (Concentration vs Mobility) تأثير تركيز الدوبانت على الناقلية .2.6.4

وحركية الحاملات في المادة شبه الناقلة. ويبيّن المنحنى نمطًا فيزيائيًا  (atoms/cm³) العلاقة بين تركيز الإشابة  8يوضح الشكل  

 .(Impurity Scattering) معروفًا، يتمثل في انخفاض تدريجي للحركية مع ازدياد تركيز الشائبة، نتيجة تأثير التبعثر الشوائبي

 :ويمكن تقسيم السلوك الظاهر في الرسم إلى ثلاث مراحل

 :(cm⁻³ 10¹⁶×1 – 10¹⁵×1المرحلة الأولى ) -1

، مما يشير إلى أن كثافة الشوائب في هذه المنطقة (cm²/V·s 1525~) تبقى حركية الحاملات عند مستوى مرتفع وثابت تقريبًا

 .منخفضة بما يكفي لعدم التأثير على مسار الحاملات الحرارية

 :(cm⁻³ 10¹⁷×5 – 10¹⁶×1المرحلة المتوسطة ) -2

  .يبدأ الانخفاض التدريجي في الحركة، وتصبح تأثيرات التبعثر واضحة

 Mean) في هذا النطاق، تتفاعل الإلكترونات )أو الثقوب( بشكل متزايد مع مواقع الشوائب المؤينة، مما يقلل متوسط المسار الحر

Free Path). 

 :(cm⁻³ 10¹⁸×1=المرحلة الحرجة ) -3

 Impurity Coulomb Scattering :يهبط منحنى الحركية بشكل حاد، وهو سلوك مرتبط بظاهرة

حيث يفوق عدد المراكز المؤينة قدرة الشبكة على تمرير الحاملات بكفاءة، ما يؤدي إلى انخفاض سريع في الحركية وصولًا  

 .cm²/V·s 1440إلى ~

الفعّالة والحركة المرتفعة،   يوضح  :الدلالة الفيزيائية بين عدد الحاملات  الشكل وجود منطقة مثلى لتركيز الإشابة تحقق توازناً 

–وهي نتيجة تتوافق مع الأدبيات العلمية الخاصة بإشابة السيليكون والسيليكون  cm⁻³ 10¹⁶ – 10¹⁵  :ويكون هذا النطاق عمومًا بين

 .كربيد والمواد ذات البنية المشابهة

 

 (Concentration vs Mobility) تأثير تركيز الدوبانت على الناقلية (10)الشكل 
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 (Time vs Defect Density) تأثير الزمن على كثافة العيوب .3.6.4

 :العلاقة بين زمن الإشابة وكثافة العيوب في المادة شبه الناقلة. ويظُهر المنحنى ثلاثة أنماط مميزة من السلوك 9يعرض الشكل 

 :ثانية( 90–10المرحلة الأولى ) .1

تنخفض كثافة العيوب تدريجياً مع الزمن، مع وجود تذبذبات طفيفة، مما يعكس تأثير الانتشار الحراري في إعادة ترتيب الشبكة 

 .وتقليل الاضطرابات البلورية الناتجة عن الجرعة الابتدائية

 :ثانية( 110–90المرحلة الثانية )حوالي  .2

تتراجع فيها كثافة العيوب إلى أدنى مستوى، وهو ما يشير إلى حالة توازن بين الانتشار وتخفيف   منطقة مثلىيصل النظام إلى 

 .الإجهاد الشبكي

 :ثانية( 200–110المرحلة الثالثة ) .3

 :ثانية، وهو سلوك يرتبط عادةً بـ 180و  150تبدأ كثافة العيوب بالارتفاع مجدداً، ويظهر ازدياد حاد بين 

 (Over-Diffusion) زيادة الإفراط في الانتشار -

 نشوء مراكز عيبية جديدة  -

 حدوث إجهاد بلوري حراري متزايد بسبب زمن المعالجة الطويل -

يجب عدم تجاوزها   نافذة زمنية مثلىعلى العيوب، وأن هناك    زمن الإشابة له تأثير غير خطّيوبشكل عام، يوضح المنحنى أن  

 .لتجنب ارتفاع العيوب

 

 (Time vs Defect Density) تأثير الزمن على كثافة العيوب (11)الشكل 

 (3D Parameter Space) خريطة ثلاثية الأبعاد لجودة المادة .4.6.4

تظُهر الخريطة الثلاثية الأبعاد توزيع جودة المادة الناتجة عن الإشابة عبر فضاء المعلمات الثلاثة: درجة الحرارة، زمن المعالجة، 

 (Material Quality Score) وتركيز الشائبة. يمثلّ كل محور أحد المتغيرات الفيزيائية، بينما يمثلّ اللون قيمة الجودة الكلية

 :التي حُسبت من خلال دمج

 Uniformity Index  مؤشر التجانس -
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 Carrier Mobility  حركية الحاملات -

 Defect Density  كثافة العيوب -

 .اعتماداً على دالة الهدف المستخدمة في التحسين

 :والتي تتركّز تقريبًا عند أخضر( تشير إلى القيم المثلى للجودة،–منطقة محددة ذات لون أعلى )أصفرتظُهر الخريطة وجود 

 C°880–820درجات حرارة بين  -

 ثانية  100–60مدد معالجة  -

 cm⁻³ 10¹⁶–10¹⁵تركيز شائبة بحدود  -

 .ويدل ذلك على أن هذه المنطقة تحُقّق التوازن الأفضل بين تنشيط الشوائب، والحفاظ على تجانس جيد، والحد من كثافة العيوب

 

 (3D Parameter Space) خريطة ثلاثية الأبعاد لجودة المادة (12)الشكل 

  الإشابةتجربة لنتائج  التحليل الإحصائي. 7.4

الناتجة عن عملية التوليد والتحسين، تم تنفيذ مجموعة من التحليلات   بهدف التحقق من استقرار النموذج وموثوقية الفرضيات 

تحت تغيّرات صغيرة في ظروف التشغيل، وقياس   (Surrogate Model) تقييم سلوك النموذج البديلل  وذلك  ،الإحصائية المتقدمة

النتائج  في  الثقة  مستوى  وفهم  للضوضاء،  الفرضيات  تقدير حساسية  إلى  إضافة  ومخرجاتها،  الإشابة  متغيرات  بين  العلاقات 

 وقد شملت هذه التحليلات أربع أدوات رئيسية: معاملات الارتباط، محاكاة مونتِ كارلو، تحليل الحساسية، وفترات الثقة  ،النهائية

 .ومكتبات بايثون المناسبة  لهذا الغرض وتم تنفيذها من خلال أكواد 

 (Pearson & Spearman Correlations) معاملات الارتباط -1

لقياس قوة العلاقة بين المتغيرات الفيزيائية الأساسية )درجة  Spearman و Pearsonتم حساب مصفوفات الارتباط من نوعَي 

 .الحرارة، الزمن، تركيز الشائبة( وبين المخرجات )التجانس، ناقلية الحاملات، كثافة العيوب(

 :وأظهرت النتائج ما يلي

- ( التجانس  الشائبة ومؤشر  تركيز  بين  عالي جداً    يعتمد  بحيث   صُممت  التي  البيانات  طبيعة  مع  متسق  وهو  ،(1.0≈ارتباط 

 .الشائبة تركيز على مباشر بشكل التجانس
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 .، مما يعكس دور الحرارة في تنشيط الدوبانت وزيادة الحركة(0.88<) ارتباط قوي بين درجة الحرارة وناقلية الحاملات -

 .ارتباط ضعيف للزمن مع جميع المخرجات، مما يشير إلى أن تأثيره في النموذج الحالي محدود ويمكن تطويره مستقبلاً  -

 .ضعف الارتباط بين كثافة العيوب وباقي المتغيرات، مما يعكس استقلاليتها النسبية في نموذج التوليد -

 

 (Pearson & Spearman Correlations) لقطة شاشة تبين نتائج معاملات الارتباط (13)الشكل 

 

 الخريطة الحرارية لمعامل ارتباط بيرسون  (14)الشكل 

 (Monte Carlo Stability Analysis)  حاكاة مونتِ كارلوم -2

محاكاة مع   1000، تم تنفيذ Bayesian Optimization لتحليل الاستقرار الإحصائي للفرضية المثلى المستخلصة بواسطة

 .إدخال ضوضاء طفيفة على المتغيرات الأساسية

 :النتائج ما يلي بينتوقد 

- ( منخفض  معياري  بانحراف  للغاية  عاليًا  استقرارًا  أظهرت  الحاملات   أن  إلى  يشير  مما  ضيق،  ثقة  ونطاق  ،(4.8≈ناقليّة 

Mobility  في منطقة تشغيل مستقرة وغير حساسة للتغيّرات الصغيرة. 

 .، وهو متوقع نظرًا لاعتماده القوي على تركيز الشائبة(std ≈226) مؤشر التجانس أظهر تشتتاً أكبر -

 .كثافة العيوب حافظت على تشتت متوسط ضمن نطاق مقبول، مما يعكس اتساق النموذج في تمثيل سلوك العيوب -

وتشير هذه النتائج إلى أن الفرضية المحسّنة تتمتع بموثوقية عالية فيما يتعلق بالخصائص الإلكترونية، مع حساسية متوسطة تجاه  

 .المتغيرات المرتبطة بالتجانس
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 (Monte Carlo Stability Analysis)  محاكاة مونتِ كارلولقطة شاشة تظهر نتائج  (15)الشكل 

 (Sensitivity Analysis)  حليل الحساسيةت -3
 

 :وأظهرت النتائج أن ،صغير وقياس أثره على المخرجات Δ± تم إجراء تحليل للحساسية عبر تعديل كل متغير
 

، حيث أدت زيادة طفيفة في الحرارة إلى ارتفاع ملحوظ في الحركة، Mobility درجة الحرارة هي العامل الأكثر تأثيرًا على -

 .وهو سلوك يتوافق مع نماذج تنشيط الدوبانت

، مما يبرز أهميته UI تركيز الشائبة كان الأكثر تأثيرًا على مؤشر التجانس، حيث أدى تغييره الطفيف إلى فروق كبيرة في -

 .في عملية التحكم في توزيع الشوائب

 .الزمن كان تأثيره محدوداً نسبيًا على جميع المخرجات، وهو ما يعكس تصميم بيانات التوليد في هذا النموذج -
 

 

 (Sensitivity Analysis) لقطة شاشة تبين تحليل الحساسية  (16)الشكل 

 (Confidence Intervals) فترات الثقة -4
 

 :% للمتغيرات المستخلصة من محاكاة مونتِ كارلو، وأظهرت النتائج95تم حساب فترات الثقة بنسبة 
 

 .، مما يدل على ثبات عاليMobility فترة ثقة ضيقة لــ -

 .، مما يعكس تشتتاً محدوداً وغير مقلق Defect Density فترة متوسطة الاتساع لــ -

 .، نتيجة حساسيته العالية للتركيز والحرارةUniformity Index فترة واسعة نسبيًا لــ -
 

 .تسُهم هذه الفترات في قياس درجة التأكد من النتائج وتحديد حدود التباين الطبيعي المتوقع في ظروف التشغيل
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 (Confidence Intervals) لقطة شاشة تبين فترات الثقة (17)الشكل 

 :المناقشة العامة. 8.4
 

 :من خلال النتائج السابقة يمكن استخلاص أن
 

 .النظام قادر على إعادة اكتشاف “النقطة المثالية” التي وضعناها في النموذج الاصطناعي بشكل مستقل .1

2. Bayesian Optimization كان فعالاً جداً في تضييق مجال البحث وتقليل عدد التجارب اللازمة. 

 .نظام توليد الفرضيات أظهر سلوكاً يشبه الباحث العلمي الحقيقي .3

 .الرسوم البيانية دعمت النتائج الرقمية وأظهرت العلاقات الفيزيائية بشكل واضح .4

 .حقق دقة عالية ومن الممكن تطويره لاحقاً على بيانات حقيقية (Surrogate) المحاكي البديل .5
 

  :والتوصياتالنتائج  .5
 

 :النتائج .1.5
 

البحث إلى تطوير نظام تجريبي ذكي قادر على تحليل وتحسين ظروف الإشابة في أشباه الموصلات باستخدام دمج منهجي   هدف

وقد اعتمد النظام على بناء مجموعة بيانات شبه فيزيائية مكوّنة   ، بين البيانات التوليدية والمحاكاة البديلة وتقنيات التحسين الذكية

عيّنة، جرى توليدها وفق علاقات تحاكي نماذج الانتشار الحراري والتبعثر الشوائبي بما يعكس السلوك العام لعمليات   2000من  

 .دون الحاجة إلى بيانات مخبرية فعلية ،الإشابة الصناعية
 

متعددة المخرجات أداءً  Random Forest الذي بنُي باستخدام خوارزمية   (Surrogate Model) وقد حقّق النموذج البديل

  (Carrier Mobility)  وحركية الحاملات (Uniformity Index) ممتازاً، إذ أظهر قدرة عالية على التنبؤ بمؤشر التجانس

 TCAD ، بجودة تنبؤ تعُد كافية لاستخدامه بديلاً سريعاً لعمليات المحاكاة الثقيلة من نوع(Defect Density)   وكثافة العيوب

 .في المراحل الأولية من الاستكشاف
 

فعاليتها في البحث عن أفضل الشروط التجريبية، إذ نجحت في تحديد نطاق   Bayesian Optimization كما أثبتت خوارزمية  

وجاء هذا التطابق     .(cm⁻³ 10¹⁶×1 ) ، وتركيز الدوبانت(s 90–80) ، وزمن المعالجة(C°860–845)   مثالي لدرجة الحرارة

 .بين نتائج التحسين والسلوك الفيزيائي المتوقع ليؤكد أن النظام قادر على التقاط العلاقات العلمية الصحيحة بين المتغيرات
 

وتقييمها  فرضيات  بتوليد  تقوم  تجريبي  تفكير  لخوارزمية  أولياً  نموذجاً  التكراري  الفرضيات  توليد  نظام  قدمّ  ذلك،  إلى  إضافة 

 .وتحسينها عبر عدة دورات، ما كشف عن قدرة النظام على التكيّف الذاتي والتعلمّ المتتابع نحو الظروف المثلى
 

 Monte ومحاكاة  ،Pearson ,Spearmanبما في ذلك  ولتعزيز مصداقية النتائج، تم تنفيذ حزمة واسعة من التحليلات الإحصائية

Carlo،  وهي تحليلات أكدت استقرار النموذج ودقة العلاقات المستخلصة، وسمحت بفهم  وتحليل الحساسية، وحساب فترات الثقة

 .أعمق لتأثير كل متغير على مخرجات الإشابة
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في   في  يظهر عالية  سرعة  يحقق  واعداً  نهجاً  يمثل  الإشابة  عمليات  وتحسين  دراسة  في  الاصطناعي  الذكاء  دمج  أن  النتائج 

اليدوية   بالطرق  إليها  الوصول  يصعب  دقيقة  فيزيائية  أنماط  اكتشاف  ويتيح  المكلفة،  التجارب  إلى  الحاجة  ويقلّل  الاستكشاف، 

 .التقليدية

 :التوصيات .2.5

 : توصيات بحثية .1.2.5
 

عالية   .1 أو  الخطية  الحالات غير  في  التعميم، خصوصاً  قدرته على  النموذج وزيادة  لمعايرة  فعلية  تجريبية  بيانات  إضافة 

 .التركيز

 .لزيادة الدقة PDE تعزيز النموذج الفيزيائي عبر استبدال العلاقات شبه التجريبية بنماذج انتشار معتمدة على .2

 .ودرجات جرعات مختلفة (N-type / P-type) توسيع نطاق الدراسة ليشمل أنواعاً متعددة من الدوبانت .3

 .متقدمة لتطوير قدرة توليد الفرضيات بحيث تصبح أكثر تفسيراً ودقة LLMs دمج .4

 .لبناء نظام قادر على المحاكاة والتعلم واتخاذ القرار عبر حلقات طويلة (RL) استكشاف خوارزميات التعلم التعزيزي .5

 .لفهم تأثير المتغيرات وتعزيز شفافية النموذج Explainable AI استخدام مكتبات .6

 توصيات صناعية  .2.2.5
 

 .كطبقة استكشافية سريعة في خطوط تصنيع أشباه الموصلات  Surrogate Models اعتماد .7

لتقليل الزمن اللازم للوصول إلى الإعدادات المثلى قبل تنفيذ المعالجة الحرارية في  Bayesian Optimization استخدام .8

 .الأفران

 .تغُذىّ ببيانات المستشعرات وتستخدم المحاكاة اللحظية للتحكم بالمعالجة (Smart Furnaces) تطوير أنظمة تحكم ذكية .9

 .(Closed-Loop Control) دمج النظام مع أدوات القياس الصناعية لضبط عملية الإشابة بشكل تلقائي في الزمن الحقيقي .10
 

 توصيات مستقبلية  .3.2.5
 

 .لبناء منصة تعلمّ ذاتي تعتمد على بيانات حقيقية  (XRD ،SEM ،SIMS)ربط النظام بأدوات تحليل المواد  .11

 .، وليس فقط تحسين عمليات الإشابة(Materials Discovery)توسيع الإطار ليصبح نظاماً لاكتشاف المواد الجديدة  .12

 .وبيروفسكايت، نظراً لنشاطها في التطبيقات الحديثة SiCو GaN اختبار النموذج على مواد مختلفة مثل .13

 .تحويل المشروع إلى منصة مفتوحة المصدر تتيح للباحثين تعديل النماذج واختبارها وتطويرها  .14

 .دمج وحدات التقييم الإحصائي مباشرة داخل دورة المحاكاة لضمان استقرار الفرضيات قبل اعتمادها .15
 

  :الخاتمة .3.5

من   ظروف الإشابة في أشباه الموصلات  تقديم إطار متكامل يعتمد على الذكاء الاصطناعي لدراسة وتحسين  إلىهذا البحث    سعى

وقد أثبت النظام   ؛خلال الجمع بين البيانات التوليدية، ونماذج المحاكاة البديلة، وخوارزميات التحسين، وآليات توليد الفرضيات

 .قدرته على اكتشاف علاقات فيزيائية دقيقة، وتحديد ظروف مثلى للإشابة، وتطوير فرضيات علمية قابلة للاختبار

أن الذكاء الاصطناعي أصبح عنصراً أساسياً في تطوير المواد وتصميم العمليات، وقادراً على تقليل التكلفة،   فكرةالنتائج    تدعم

ويمهّد هذا الإطار الطريق لبناء أنظمة ذاتية التعلم تحُدث تحولاً جذرياً في هندسة المواد   ،وتحسين الدقة، وتسريع دورة الابتكار

 .المتقدمة وتقنيات التصنيع الحديثة
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